Vector Algebra

  • 1) What is the value of a × b?

  • smile
  •   6
  •   -3
  •   -9
  •   -6
  • 2) What is the value of a. b and hence find the value of θ?

  • smile
  •   102.4°
  •   100.3°
  •   101.1°
  •   104.3°
  • 3) Use the dot product to find the size of angle θ?

  • smile
  •   16.4°
  •   106.8°
  •   66.8°
  •   59.8°
  • 4) If k is any positive number, what is the size of the angle between the vectors a = (k, k) and b = (-3, 4)?

  • smile
  •   91.9°
  •   56.5°
  •   101.1°
  •   81.9°
  • 5) Which one of the following is not a unit vector?
    a. (0,1,0) b. (0,0,1) c. (1/√3,1/√3,1/√3 ) d. (1,1,1)

  • smile
  •   b
  •   d
  •   a
  •   c
  • 6) What is the size of the angle between the vectors a = (2, 5, -1) and b = (-3, 2, 6)?

  • smile
  •   99.0
  •   96.0
  •   98.0
  •   93.0
  • 7) Vector a has magnitude 3, vector b has magnitude 4, the angle between a and b is 30° and n is the unit vector at right angles to both a and b. What is a × b?

  • smile
  •   2n
  •   4n
  •   6n
  •   5n
  • 8) Vector a has magnitude 3√2, vector b has magnitude 5. The angle between a and b is 135° and n is the unit vector at right angles to both a and b. What is the value of a × b?

  • smile
  •   13n
  •   16n
  •   12n
  •   15n
  • 9) Vector a has magnitude 1/√3, vector b has magnitude 4, the angle between a and b is 60° and n is the unit vector at right angles to both a and b. What is the value of a × b?

  • smile
  •   4n
  •   3n
  •   6n
  •   2n
  • 10) What is the cross product of a = (1, 2, 3) and b = (4, 5, 6)?

  • smile
  •   (8, 6, 7)
  •   (-3, -6, 3)
  •   (3, 9, 3)
  •   (-3, 6, -3)
  • 11) What is the cross product of a = (-2, 3, 5) and b = (-4, 1, -6)?

  • smile
  •   (-29, -72, 30)
  •   (-53, -72, 10)
  •   (-23, -32, 10)
  •   (-33, -32, 40)
  • 12) What is the cross product of a = (2, -5, 1) and b = (3, -2, -4)?

  • smile
  •   (22, 11, 11)
  •   (25, 16, 11)
  •   (25, 13, 14)
  •   (28, 12, 11)
  • 13) If a = (-2, 1, 1), b = (2, 1, 1) and c = a × b, what is the magnitude of c?

  • smile
  •   7√2
  •   5√3
  •   9√2
  •   4√2
  • 14) If a = (2, 0, 1), b = (0, 1, 1/2) and c = a × b, what is the magnitude of c?

  • smile
  •   √6
  •   √5
  •   √8
  •   √3
  • 15) If a = (2, -4, 4), b = (4, 0, 3) and c = a × b, what is the magnitude of c?

  • smile
  •   18√5
  •   9√5
  •   10√5
  •   12√5
  • 16) a, b and c are three vectors such that c is perpendicular to both a and b. What is the value of a × b × c?

  • smile
  •   (0, 1, 0)
  •   (0, 0, 0)
  •   (0, 0, 1)
  •   (1, 0, 0)
  • 17) What should be added in vector to get its resultant a unit vector i, if a = 3i + 4j - 2k

  • smile
  •   -2i + 4j + 2k
  •   -i – j + k
  •   -2i – 4j + 2k
  •   -2i – 4j + 5k
  • 18) The magnitudes of mutually perpendicular forces a, b and c are 2, 10 and 11 respectively. Then the magnitude of its resultant is

  • smile
  •   15
  •   12
  •   13
  •   10
  • 19) The position vectors of two points A and B are i + j - k and 2i - j + k respectively. Then |AB| = ?

  • smile
  •   6
  •   4
  •   0
  •   8
  • 20) If a and b are two non-zero and non-collinear vectors, then a + b and a - b are?

  • smile
  •   Linearly independent
  •   Linearly spanning
  •   Linearly dependent
  •   None of these
  • 21) Find the angle between two vectors a and b having the same length √2, and their scalar product is -1

  • smile
  •   2π/3
  •   2π
  •   π/3
  •   π
  • 22) Let a and b be two vectors of the same magnitude, such that the angle between them is 60° a × b = 8. Find

  • smile
  •   2
  •   1
  •   5
  •   4
  • 23) If vector a = 5i - j - 3k and vector b = i + 3j - 5k, then the vectors (a + b) × (a - b) is

  • smile
  •   Non parallel
  •   Perpendicular
  •   Collinear
  •   Parallel
  • 24) Find

  • smile
  •   -i - j - 2k
  •   -i - j + 2k
  •   -2i - 3j - 2k
  •   i + j + 2k
  • 25) Find the magnitude of

  • smile
  •   √19
  •   91
  •   19
  •   √91
  • 26) If a and b are two vectors such that

  • smile
  •   7
  •   5
  •   4
  •   3
  • 27) Find the values of x for which vectors a = 2x²i + 4xj + k and 7i - 2j + xk is obtuse.

  • smile
  •   0 < x < -1
  •   0 < x < -1/2
  •   0 < x < 1/2
  •   0 > x > 1/2
  • 28) Find the projection of vector 7i + j - 4k on vector 2i +6j + 3k

  • smile
  •   7/8
  •   9/7
  •   16/7
  •   8/7
  • 29) Here which of the following represents the linear combination of vectors?

  • smile
  •   Both 1 and 2
  •   Both 1 and 3
  •   None of these
  •   Only 1
  • 30) The magnitude of a vector F is 10 units and the direction of the vector is 60° with the horizontal. Find the components of the vector?

  • smile
  •   (5, 5√3)
  •   (4, 4√2)
  •   (6, 6√3)
  •   (9, 9√2)
Maths
S.No Topic Name Date Online Offline
1 Linear Programming 03-May
2 Probability and Combinatorics 02-May
3 Differential Calculus 29-April
4 Sequences and Series 28-April
5 Conics 27-April
6 Functions 26-April
7 Matrices and Determinants 25-April