Differential Calculus

  • 1) The luminous intensity I candelas of a lamp at varying voltage V is given by: I = 4 × 10⁻⁴ V². Determine the voltage at which the light is increasing at a rate of 0.6 candelas per volt.

  •   650
  •   450
  •   750
  •   550
  • 2) The length l meters of a certain metal rod at temperature θ°C is given by l = 1 + 0.00005θ + 0.0000004θ². Determine the rate of change of length in mm/°C when the temperature is 100°C.

  •   0.33
  •   0.23
  •   0.13
  •   0.43
  • 3) The distance x meters described by a car in time t seconds is given by: x = 3t³ − 2t² + 4t − 1. Determine the acceleration when t = 0.

  •   -7
  •   4
  •   7
  •   -4
  • 4) Supplies are dropped from a helicopter and distance fallen in time t seconds is given by x = 1/2gt² where g = 9.8 m/sec². Determine the velocity and acceleration of the supplies after it has fallen for 2 seconds.

  •   v = 18.6 m/sec, a = 8.8 m/sec²
  •   v = 19 m/sec, a = 10 m/sec²
  •   v = 9.8 m/sec, a = 19.6 m/sec²
  •   v = 19.6 m/sec, a = 9.8 m/sec²
  • 5) A boy, who is standing on a pole of height 14.7m throws a stone vertically upwards. It moves in a vertical line slightly away from the pole and falls on the ground. Its equation of motion in meters and seconds is x = 9.8 t − 4.9t². Find the time taken for downward motions.

  •   5
  •   4
  •   3
  •   2
  • 6) A ladder 10m long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 1m/sec, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6m from the wall?

  •   1/7
  •   2/3
  •   3/4
  •   1/3
  • 7) A car A is travelling from west at 50 km/hr. and car B is travelling towards north at 60 km/hr. Both are headed for the intersection of the two roads. At what rate are the cars approaching each other when car A is 0.3 kilometers and car B is 0.4 kilometers from the intersection?

  •   77
  •   78
  •   95
  •   86
  • 8) A water tank has the shape of an inverted circular cone with base radius 2 metres and height 4 metres. If water is being pumped into the tank at a rate of 2m³/min, find the rate at which the water level is rising when the water is 3 m deep.

  •   8/9π
  •   8/7π
  •   6/5π
  •   1/9π
  • 9) Find the equations of the tangent to the curve y = x³ at the point (1,1)

  •   y = 3x + 1
  •   y = 3x + 2
  •   y = 3x – 2
  •   y = 3x – 1
  • 10) Determine

  • smile
  •   10
  •   11
  •   17
  •   15
  • 11) Determine

  • smile
  •   3
  •   6
  •   5
  •   4
  • 12) Determine

  • smile
  •   20
  •   35
  •   45
  •   25
  • 13) Determine

  • smile
  •   0
  •   9
  •   3
  •   1
  • 14) Determine

  • smile
  •   5
  •   3
  •   4
  •   9
  • 15) Determine

  • smile
  •   4
  •   2
  •   1
  •   3
  • 16) Determine

  • smile
  •   6
  •   5
  •   7
  •   4
  • 17) Determine

  • smile
  •   32/6
  •   52/6
  •   57/6
  •   37/6
  • 18) Determine

  • smile
  •   0
  •   Not defined
  •   -1
  •   1
  • 19) Determine

  • smile
  •   0
  •   6
  •   Does not exist
  •   1
  • 20) Determine

  • smile
  •   0
  •   Not defined
  •   -3
  •   3
  • 21) Determine

  • smile
  •   3
  •   -3
  •   Not defined
  •   0
  • 22) Determine

  • smile
  •   √8/9
  •   √3/6
  •   √5/6
  •   √7/6
  • 23) Given g(x) = 3x², determine the gradient of the curve at the point x = −1

  • smile
  •   6
  •   -6
  •   4
  •   -8
  • 24) Given the function f(x) = 2x² − 5x, determine the gradient of the tangent to the curve at the point x = 2

  • smile
  •   3
  •   8
  •   -8
  •   6
  • 25) Determine the gradient of k(x) = −x³ + 2x + 1 at the point x = 1

  • smile
  •   3
  •   -1
  •   5
  •   6
  • 26) Given: f (x) = −x² + 7. Find the average gradient of function f, between x = −1 and x = 3

  • smile
  •   -2
  •   7
  •   5
  •   6
  • 27) Given: f (x) = −x² + 7, find the gradient of ‘f’ at the point x = 3

  • smile
  •   -4x
  •   -7x
  •   -8x
  •   -2x
  • 28) Determine the gradient of the tangent to g if g(x) = 3/x

  • smile
  •   -3/a²
  •   -6/a²
  •   6/a²
  •   3/a²
  • 29) Determine the equation of the tangent to H(x) = x² + 3x at x = −1

  • smile
  •   y = - x +1
  •   y = -x – 1
  •   y = x – 1
  •   y = x +1
  • 30) Use the rules of differentiation to find the derivative of y = 3x⁵

  • smile
  •   12x⁴
  •   5x⁴
  •   3x⁴
  •   15x⁴
Maths
S.No Topic Name Date Online Offline
1 Vector Algebra 04-May
2 Linear Programming 03-May
3 Probability and Combinatorics 02-May
4 Sequences and Series 28-April
5 Conics 27-April
6 Functions 26-April
7 Matrices and Determinants 25-April