Functions

  • 1) Let A = {-2, -1, 0, 1, 2} and if f : A → Z be given by f(x) = x² - 2x - 3. Find the range of f.

  •   {0, 5, 3, -4}
  •   {0, -5, -3, -4}
  •   {0, 5, -3, 4}
  •   {5, 0, -3, -4}
  • 2) Consider the function f (x) = x². Let A = {-2, -1, 0, 1, 2} under this rule f (x) = x² if we obtain f (-2) = 5, f (-1) = 1, f (0) = 0, f (1) = 1 then what could be the functions domain.

  •   None of these
  •   {-2, -1, 0, 1, 2}
  •   {5, 1, 0, 1}
  •   {3 , 0 , -2 , 2}
  • 3) Let A = {-2, -1, 0, 1, 2} and if f: A → Z be given by f(x) = x² - 2x - 3. Find the pre image of 6

  •   No Pre image
  •   -6
  •   3
  •   7
  • 4) Find the domain for which the function f(x) = 2x² – 1 and g(x) = 1 - 3x are equal.

  •   (2, 1/2)
  •   (-2, -1)
  •   (-2 , -1/2)
  •   (-2, 1/2)
  • 5) Let f : R → R be a function given by f (x) = x² + 1. Find fˉ¹ (10)

  •   ±4
  •   ±3
  •   No Pre image
  •   ±5
  • 6) Let f = {(1, 1), (2, 3), (0, -1), (-1, -3)} be a function described by the formula f(x) = ax + b. Find a and b.

  •   (2, -1)
  •   (-2, -1)
  •   (2, 0)
  •   None of these
  • 7) Find f (-1) if a function f : R → R be defined by

  • smile
  •   7
  •   9
  •   -5
  •   8
  • 8) If f(x) = x² - 3x + 4, then find the value of f (2x + 1)

  • smile
  •   4x
  •   4x² - 2x - 2
  •   -4x² - 2x - 2
  •   4x² - 2x + 2
  • 9) If f (x) = (x - a)² (x - b)², find f (a + b)

  • smile
  •   None of these
  •   a²b²
  •   ab
  •   xab
  • 10) Find the domain for the function f (x) = √(x - 2)

  • smile
  •   [2, -5)
  •   (-2, ∞]
  •   (0, 0)
  •   [2 , ∞)
  • 11) Find the domain for the function f (x) = √(4 - x²)

  • smile
  •   (- 2, ∞)
  •   [2, ∞)
  •   [2, -2)
  •   [-2, 2]
  • 12) Find the range of the function f (x) = [(4 - x) / (x - 4 )]

  • smile
  •   Ø
  •   2
  •   x
  •   -1
  • 13) Find the range of f (x) = [( x - 2) / (3 - x )]

  • smile
  •   R → {2}
  •   R → {1}
  •   R → {-1}
  •   R → {0}
  • 14) How many terms are there in GP 3, 6, 12, ……., 384?

  • smile
  •   35
  •   8
  •   3
  •   30
  • 15) Find the 9th term of the GP 2, 4, 8, 16 …….

  • smile
  •   453
  •   625
  •   512
  •   320
  • 16) Mary buys a Chocolate box A(P) = 50P² - 15p + 30, each Chocolate in the Chocolate box worth p = $3. Find the worth of the Chocolate box.

  • smile
  •   435
  •   450
  •   345
  •   400
  • 17) Kevin runs in a playground P(t) = 40t² - 30t + 3 meters. The time taken by him, t = 2s. Then find the total distance covered by Kevin.

  • smile
  •   100
  •   102
  •   98
  •   105
  • 18) In Cadbury city average consumption of Chocolate by a child for respective years are given. Find the rate of change?

  • smile
  •   14
  •   -15
  •   25
  •   15
  • 19) For the function f (x) = (x - 3)². Find the average rate of change between the points at x = 1, x = 3

  • smile
  •   6
  •   3
  •   4
  •   -2
  • 20) Let f be in subset of Z × Z defined by f = {(ab, (a + b) : a, b ∈ Z}. Then f is a

  • smile
  •   Function
  •   Composite Function
  •   Complement Function
  •   Not a Function
  • 21) Find the range of f, if f : R → R be defined as

  • smile
  •   [0, -1]
  •   [1, 1]
  •   [0, 1]
  •   [1, -1]
  • 22) Determine {x : f(x) = 1}, if f : R → R be such that f (x) = 2 ̽

  • smile
  •   0
  •   4
  •   x
  •   1
  • 23) The function f and g is defined as

  • smile
  •   f is a function but g is not a function is a function
  •   g is a function
  •   f is a function
  •   f and g is a function
  • 24) If f (x) = x², find [(f (1.1) - f (1)) / (1.1) - 1]

  • smile
  •   2.1
  •   5.1
  •   3.1
  •   4.1
  • 25) Find the domain of the function f (x) = √(4 - x) + (1 / √(x² - 1))

  • smile
  •   (∞, 1) ∪ (1, 4]
  •   (-∞, -1) ∪ ( 1, 4]
  •   (-∞, -1) ∪ (-1, -4]
  •   (∞, -1) ∪ (1, 4]
  • 26) Find the domain of the function f(x) = (1/2 - sin3x)

  • smile
  •   Odd numbers
  •   Even numbers
  •   N
  •   R
  • 27) Find f (-√(3))

  • smile
  •   4
  •   -3
  •   -4
  •   3
  • 28) Find the range of the function f(x) = 3 / (2 - x²)

  • smile
  •   (-∞, 0) ∪ [ -1 , ∞)
  •   (-∞, 0) ∪ [1, ∞)
  •   ( ∞ , 0 ) ∪ [1 , ∞)
  •   (-∞, 0 ) ∪ [-1, -∞)
  • 29) Find the range of the function f(x) = 3 / (2 - x²)

  • smile
  •   (∞ , 0 ) ∪ [-3/2 , ∞)
  •   (-∞ , 0 ) ∪ [ 3/2 , ∞)
  •   (-∞, 0 ) ∪ [-3/2 , -∞)
  •   (∞, 0) ∪ [3/2, ∞)
  • 30) Find the general term of the progression 1/4, -1/2, 1, -2

  • smile
  •   (-1)ⁿ (2)ⁿˉ³
  •   (-1)ⁿˉ⁴ (2)ⁿˉ³
  •   (-1)ⁿˉ³ (2)ⁿˉ³
  •   (-1)ⁿˉ³ (-2)ⁿˉ³
Maths
S.No Topic Name Date Online Offline
1 Vector Algebra 04-May
2 Linear Programming 03-May
3 Probability and Combinatorics 02-May
4 Differential Calculus 29-April
5 Sequences and Series 28-April
6 Conics 27-April
7 Matrices and Determinants 25-April