

Ninth Grade - Vector and Matrix Quantities

1) Classify whether the quantity 10 kg is

- Unit
- Co initial vectors
- Vector
- Scalar

2) Classify whether 10 meters north is

- Scalar
- Co intial vectors
- Unit
- Vector

3) Classify whether 10 Newton is

- Scalar
- Co initial vectors
- Vector
- Unit

4) Classify whether 10^{23} coulomb is

- Scalar
- Co initial vectors
- Vector
- Unit

5) Let a and b are given vectors such that

If \vec{a} and \vec{b} are collinear and are in the same direction then

- -ab
- 0
- 1
- ab

6) Let \mathbf{a} and \mathbf{b} are given vectors such that

If \vec{a} and \vec{b} are in the opposite direction then

- -ab
- 0
- 1
- ab

7) Let \mathbf{a} and \mathbf{b} are given vectors such that

If \vec{a} and \vec{b} are two nonzero vectors then

a) $\vec{a} \cdot \vec{b} = 0$ b) $\vec{a} \cdot \vec{b} \neq 0$ c) $\vec{a} \propto \vec{b}$ d) $\vec{a} \equiv \vec{b}$

- d
- c
- b
- a

8) Find angle between two vectors.

If \vec{a} and \vec{b} are two vectors such that

$|\vec{a}| = 4$ $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 6$

- 1/2

- 1/4
- 1/8
- 1/3

9) Find the projection of the vector.

$$(\vec{r} \cdot \vec{j}) \vec{i} + (\vec{r} \cdot \vec{i}) \vec{j} + (\vec{r} \cdot \vec{k}) \vec{k}$$

(a) \vec{i} (b) \vec{j} (c) \vec{r} (d) \vec{k}

- b
- d
- c
- a

10) Identify the law vectors.

If \vec{a} and \vec{b} represented in magnitude and direction by the two adjacent sides of a parallelogram then their sum \vec{c} is represented by the parallelogram and it is known as

- Law of vectors
- Trapezoidal law of vectors
- Quadrilateral law of vectors
- Parallelogram law of vectors

11) If the following vectors represented by the side of the triangle taken in order by then

If $\vec{a}, \vec{b}, \vec{c}$ be the vectors represented by the sides of a triangle taken in order then

a) $\vec{a} + \vec{b} + \vec{c} = 1$ b) $\vec{a} + \vec{b} + \vec{c} = 0$

c) $\vec{a} + \vec{b} + \vec{c} = 2$ d) $\vec{a} + \vec{b} + \vec{c} = 3$

- a
- d
- c
- b

12) Simplify the following vectors.

If $|-m(\vec{a})| = ?$

a) $-m|\vec{a}|$ b) $m|\vec{a}|$ c) $m\vec{a}$ d) $-m\vec{a}$

- b
- a
- c
- d

13) If the diagonals of a parallelogram are equal then it is?

- Trapezium
- Rhombus
- Parallelogram
- Rectangle

14) If the vectors are parallel to the same plane then it is

- Non collinear
- Coplanar
- Collinear
- Non coplanar

15) Which of the following is external section formula?

- a
- d
- b
- c

16) Consider the given vectors a and b.

Find the angle between two vectors \vec{a} and \vec{b}
having the same length $\sqrt{2}$ and their scalar product is -1

- $2\pi/3$
- $\pi/3$
- $\pi/2$
- $6\pi/7$

17) Consider the given vectors a and b.

Let \vec{a} and \vec{b} be two vectors of the same magnitude
such that the angle between them is 60° $\vec{a} \cdot \vec{b} = 8$. Find $|\vec{a}|$ and $|\vec{b}|$

- 3
- 4
- 5
- 8

18) Consider the given vectors a and b.

If $\vec{a} = 5\vec{i} - \vec{j} - 3\vec{k}$ $\vec{b} = \vec{i} + 3\vec{j} - 5\vec{k}$

then the vectors $(\vec{a} + \vec{b}), (\vec{a} - \vec{b})$ is

- Non parallel
- Perpendicular
- Collinear
- Parallel

19) Consider the given vectors a and b.

Find $\vec{a} \times \vec{b}$ if $\vec{a} = 2\vec{i} + \vec{k}$ $\vec{b} = \vec{i} + \vec{j} + \vec{k}$

(a) $-\vec{i} - \vec{j} + 2\vec{k}$ (b) $-\vec{j} - \vec{j} + 6\vec{k}$ (c) $-\vec{i} - \vec{i} - 8\vec{k}$ (d) $\vec{k} + \vec{j} - 2\vec{k}$

- b
- c
- a
- d

20) Let ab given vectors then

Find the magnitude $\vec{a} \cdot \vec{a} = (\vec{i} + \vec{j} + \vec{k}) \times (-\vec{i} + 3\vec{k})$

- 991
- 999
- 995
- 993

21) From the product of given two vectors.

Find λ and μ if $(2\vec{i} + 6\vec{j} + 27\vec{k}) * (\vec{i} + \lambda\vec{j} + \mu\vec{k})$

- 3, 97/7
- 5, 57/2
- 7, 17/2
- 3, 27/2

22) Given magnitude and product of two vectors then

If two vectors \vec{a} and \vec{b} are such that

$$|\vec{a}| = 3 \quad |\vec{b}| = 2 \quad \vec{a} \cdot \vec{b} = 6 \quad \text{Find } |\vec{a} + \vec{b}|$$

- 9
- 2
- 5
- 6

23) Let a and b are two vectors.

Find the values of x for which $\vec{a} = 2x^2\vec{i} + 4x\vec{j} + \vec{k}$

and $\vec{b} = 7\vec{i} - 2\vec{j} + x\vec{k}$ is obtuse

- 0
- 0
- 0 $7/2$
- $0 > x > 1/3$

24) For the given vectors.

Find the projection $7\vec{i} + \vec{j} - 4\vec{k}$ on $2\vec{i} + 6\vec{j} + 3\vec{k}$

- 8/7
- 4/7
- 5/9
- 5/7

25) Here which of the following represents the linear combination of vectors?

a) $\vec{r} = x\vec{a} + y\vec{b} + z\vec{c}$ b) $\vec{r} = x\vec{a} - y\vec{b}$ c) $\vec{r} = x\vec{a}$ d) *None*

- Both 2 and 3
- Both 1 and 2
- Both 1 and 2
- Both 2 and 4

26) Find the unit vector parallel to the vector?

$$-3\vec{i} + 4\vec{j}$$

a) $(3/5)\vec{i} + (4/5)\vec{j}$ b) $(3/5)\vec{i} - (4/5)\vec{j}$ c) $-(3/5)\vec{i} + (4/5)\vec{j}$ d) $(3/5)\vec{i} + (4/5)\vec{j}$

- c
- d
- a
- b

27) Find the magnitude of vector?

$$2\vec{i} - \vec{j}$$

- 5
- 9
- 6
- 7

28) Find the value of x, y, z

$$\vec{a} = x\vec{i} + y\vec{i} + z\vec{j} \quad \vec{b} = 2\vec{i} + y\vec{j} + \vec{k} \text{ are equal}$$

- (2, 2, 1)

- (-2 , -2 , 1)
- (-2 , -2 , -1)
- (5 , 7 , 1)

29) Find the magnitude of

$$\vec{a} = 3\vec{i} - 6\vec{j} + 2\vec{k}$$

- 3
- 9
- 5
- 7

30) How can we define.

$$\vec{a} \times \vec{b}$$

a) $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ b) $\vec{a} \times \vec{b} = \cos \theta$

c) $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta$ d) $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}|$

- d
- a
- c
- b