

Twelfth Grade - Vector Algebra

1) What is the value of $a \times b$?

- -3
- -9
- 6
- -6

2) What is the value of $a \cdot b$ and hence find the value of ??

- 104.3°
- 100.3°
- 101.1°
- 102.4°

3) Use the dot product to find the size of angle ??

- 66.8°
- 106.8°
- 16.4°
- 59.8°

4) If k is any positive number, what is the size of the angle between the vectors $a = (k, k)$ and $b = (-3, 4)$?

- 101.1°
- 56.5°
- 91.9°
- 81.9°

5) Which one of the following is not a unit vector?

a. $(0, 1, 0)$ b. $(0, 0, 1)$ c. $(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$ d. $(1, 1, 1)$

- a
- b
- c
- d

6) What is the size of the angle between the vectors $a = (2, 5, -1)$ and $b = (-3, 2, 6)$?

- 96.0
- 98.0
- 93.0
- 99.0

7) Vector a has magnitude 3, vector b has magnitude 4, the angle between a and b is 30° and n is the unit vector at right angles to both a and b . What is $a \times b$?

- $5n$
- $6n$
- $2n$
- $4n$

8) Vector a has magnitude $3\sqrt{2}$, vector b has magnitude 5. The angle between a and b is 135° and n is the unit vector at right angles to both a and b . What is the value of $a \times b$?

- $15n$
- $13n$
- $12n$
- $16n$

9) Vector a has magnitude $1/\sqrt{3}$, vector b has magnitude 4, the angle between a and b is 60° and n is the unit vector at right angles to both a and b . What is the value of $a \times b$?

- $4n$
- $3n$
- $6n$
- $2n$

10) What is the cross product of $a = (1, 2, 3)$ and $b = (4, 5, 6)$?

- $(8, 6, 7)$
- $(-3, -6, 3)$
- $(3, 9, 3)$
- $(-3, 6, -3)$

11) What is the cross product of $a = (-2, 3, 5)$ and $b = (-4, 1, -6)$?

- $(-29, -72, 30)$
- $(-23, -32, 10)$
- $(-33, -32, 40)$
- $(-53, -72, 10)$

12) What is the cross product of $a = (2, -5, 1)$ and $b = (3, -2, -4)$?

- $(25, 13, 14)$
- $(22, 11, 11)$
- $(28, 12, 11)$
- $(25, 16, 11)$

13) If $a = (-2, 1, 1)$, $b = (2, 1, 1)$ and $c = a \times b$, what is the magnitude of c ?

- 4?2
- 9?2
- 5?3
- 7?2

14) If $a = (2, 0, 1)$, $b = (0, 1, 1/2)$ and $c = a \times b$, what is the magnitude of c ?

- ?6
- ?5
- ?3
- ?8

15) If $a = (2, -4, 4)$, $b = (4, 0, 3)$ and $c = a \times b$, what is the magnitude of c ?

- 9?5
- 12?5
- 18?5
- 10?5

16) a , b and c are three vectors such that c is perpendicular to both a and b . What is the value of $a \times b \times c$?

- $(0, 0, 0)$
- $(0, 1, 0)$
- $(0, 0, 1)$
- $(1, 0, 0)$

17) What should be added in vector to get its resultant a unit vector i , if $a = 3i + 4j - 2k$

- $-2\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}$
- $-2\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$
- $-\mathbf{i} - \mathbf{j} + \mathbf{k}$
- $-2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$

18) The magnitudes of mutually perpendicular forces \mathbf{a} , \mathbf{b} and \mathbf{c} are 2, 10 and 11 respectively. Then the magnitude of its resultant is

- 12
- 15
- 10
- 13

19) The position vectors of two points A and B are $\mathbf{i} + \mathbf{j} - \mathbf{k}$ and $2\mathbf{i} - \mathbf{j} + \mathbf{k}$ respectively. Then $|\mathbf{AB}| = ?$

- 4
- 0
- 8
- 6

20) If \mathbf{a} and \mathbf{b} are two non-zero and non-collinear vectors, then $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$ are?

- Linearly spanning
- None of these
- Linearly independent
- Linearly dependent

21) Find the angle between two vectors \mathbf{a} and \mathbf{b} having the same length $\sqrt{2}$, and their scalar product is -1

- $2\pi/3$
- π
- 2π
- $\pi/3$

22) Let \mathbf{a} and \mathbf{b} be two vectors of the same magnitude, such that the angle between them is 60° $\mathbf{a} \times \mathbf{b} = 8$. Find $|\vec{a}|$ and $|\vec{b}|$

- 1
- 2
- 5
- 4

23) If vector $\mathbf{a} = 5\mathbf{i} - \mathbf{j} - 3\mathbf{k}$ and vector $\mathbf{b} = \mathbf{i} + 3\mathbf{j} - 5\mathbf{k}$, then the vectors $(\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b})$ is

- Non parallel
- Perpendicular
- Parallel
- Collinear

24) Find

$\vec{a} \times \vec{b}$, if $\vec{a} = 2\vec{i} + \vec{k}$ and $\vec{b} = \vec{i} + \vec{j} + \vec{k}$

- $-\mathbf{i} - \mathbf{j} + 2\mathbf{k}$
- $-2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$
- $-\mathbf{i} - \mathbf{j} - 2\mathbf{k}$
- $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$

25) Find the magnitude of

$|\vec{a}|$ if $\vec{a} = (\vec{i} + 3\vec{j} - 2\vec{k}) \times (-\vec{i} + 3\vec{k})$

- ?19
- 91

- ?91
- 19

26) If \mathbf{a} and \mathbf{b} are two vectors such that

$$|\vec{a}| = 3 \quad |\vec{b}| = 2 \quad \vec{a} \cdot \vec{b} = 6, \text{Find } |\vec{a} + \vec{b}|$$

- 4
- 7
- 3
- 5

27) Find the values of x for which vectors $\mathbf{a} = 2x^2\mathbf{i} + 4x\mathbf{j} + \mathbf{k}$ and $7\mathbf{i} - 2\mathbf{j} + x\mathbf{k}$ is obtuse.

- 0
- 0
- 0
- $0 > x > 1/2$

28) Find the projection of vector $7\mathbf{i} + \mathbf{j} - 4\mathbf{k}$ on vector $2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$

- $16/7$
- $9/7$
- $7/8$
- $8/7$

29) Here which of the following represents the linear combination of vectors?

1. $\vec{r} = x\vec{a} + y\vec{b} + z\vec{c}$ 2. $\vec{r} = x\vec{a} - y\vec{b}$ 3. $\vec{r} = x\vec{a}$ 4. None of these

- None of these
- Only 1
- Both 1 and 3

- Both 1 and 2

30) The magnitude of a vector F is 10 units and the direction of the vector is 60° with the horizontal. Find the components of the vector?

- (6, 6?3)
- (5, 5?3)
- (9, 9?2)
- (4, 4?2)